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Abstract—Bug localization is the task of recommending source
code locations (typically files) that probably contain the cause of a
bug and hence need to be changed to fix the bug. Along these lines,
information retrieval-based bug localization (IRBL) approaches
have been adopted, which identify the most bug-prone files from
the source code space. In current practice, a series of state-of-
the-art IRBL techniques leverage the combination of different
components, e.g., similar reports, version history, code structure,
to achieve better performance. ABLoTS is a recently proposed
approach with the core component, TraceScore, that utilizes
requirements and traceability information between different issue
reports, i.e., feature requests and bug reports, to identify buggy
source code snippets with promising results. To evaluate the
accuracy of these results and obtain additional insights into the
practical applicability of ABLoTS, supporting of future more
efficient and rapid replication and comparison, we conducted
a replication study of this approach with the original data
set and also on an extended data set. The extended data
set includes 16 more projects comprising 25,893 bug reports
and corresponding source code commits. While we find that
the TraceScore component as the core of ABLoTS produces
comparable results with the extended data set, we also find that
the ABLoTS approach no longer achieves promising results, due
to an overlooked side effect of incorrectly choosing a cut-off date
that led to training data leaking into test data with significant
effects on performance.

Index Terms—bug localization, information retrieval, replica-
tion study

I. INTRODUCTION

A software bug refers to an error, fault, or flaw that produces
unexpected results or causes a system to behave unexpect-
edly [1]. A bug may cause the system to crash or become
vulnerable to security attacks [2], [3]. Bugs are a common
phenomenon. For example, a Mozilla triager complained that
“every day, almost 300 bugs appear that need triage” [4]. Con-
sidering the severe consequences and frequent occurrences,
bugs need to be responded to promptly and coped seriously.
To this end, various techniques to assist this process have been
suggested, for example, defect prediction [5], [6], bug triaging
[7], [8], bug fixing [9], [10], and bug localization [11], [12].

Bug localization is one of the main challenges when solving
bugs, which is identifying the parts of source code that cause
the bug and need to be changed in order to fix it [13]. However,

finding the buggy files from the source code can become
a daunting task [14], especially in large projects consisting
of thousands of source code files. To help to deal with this
issue, several researchers proposed automatic approaches for
bug localization [14]–[17].

Among existing approaches for bug localization, there is
a series of them that leverage bug reports for better lo-
calization [14], [16], [17], since bug reports often contain
rich information that allows us to infer the bug’s location.
Approaches that utilize the textual content of bug reports are
generally described as information retrieval-based bug local-
ization (IRBL). For a given bug report, IRBL tries to find and
rank code snippets that may be relevant to the bug report [18],
which is usually done by calculating the similarity between
the bug report and source code [18]. For example, Saha et
al. [19] propose the BLUiR approach that extracts structured
information (e.g., class names, method names, variable names,
and comments) from source code and calculates the textual
similarity between the source code and bug reports to retrieve
buggy files. However, there exists a lexical gap between bug
reports and source code files [20]. The terms used to describe
the bug in the bug report may not match the terms used in
class names, methods names, variable names, or comments.
Not surprisingly, textual similarity by itself will not necessarily
yield good results [14].

To this end, state-of-the-art approaches leverage multiple
sources of information to improve the performance of bug
localization. Wang et al. propose the AmaLgam approach,
which combines code structure, similar bug reports, and ver-
sion history [14]. BRTracer+ leverages bug reports similarity
and stack trace from bug reports for bug localization [21].
Youm et al. integrate stack trace information with all those
pieces of information used by AmaLgam [22]. AmaLgam+
leverages five sources of information, namely version history,
similar bug reports, code structure, stack trace, and reporter
information [17].

Recently, Rath et al. presented a new approach, named
ABLoTS, that leverages not only similar bug reports, version
history, code structure, but also similar non-bug reports, like
feature requests, enhancements, tasks, and so on, as well
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as traceability information between bug reports and other
types of issues [23]. Rath et al. reused the structure of
AmaLgam, but proposed TraceScore to replace the similar bug
reports component, and additionally decided to use a decision
tree (DT) for dynamically combining the recommendations
from the individual components. The experimental evaluation
showed that ABLoTS greatly outperforms AmaLgam.

Although the original study by Rath et al. [23] showed
encouraging results (with no other state-of-the-art approaches
exhibiting better performance [24], [25]), there are no replica-
tions in the literature that confirm its outstanding performance.
Additionally, there are no studies that investigate whether the
performance also holds for a larger data set, i.e., that evaluate
the generalization of ABLoTS. A replication study is helpful
and necessary to verify experimental results from previous
studies [26]. They are a key aspect of empirical software
engineering, as they bring evidence that observations made
can hold (or not) under other conditions [27]. Extensive and
independent evaluations are also necessary to reach industrial
adoption and practice [28], [29].

In this paper, we present a literal and conceptual repli-
cation [30] of the ABLoTS approach. We replicate the ex-
periments as closely as possible to the initial procedures.
Meanwhile, we also run the experiment on another new data
set without changing anything else, to see how well the results
hold up. To this end, we first re-implemented TraceScore, the
core component of ABLoTS, and checked the replicability
of the results on the original data set. Then, we replicated
the overall ABLoTS framework on the original data set.
Additionally, we investigated the TraceScore’s and ABLoTS’
generalizability based on an extended data set from Rath and
Mäder [31]. Our work is organized according to standard
replication report guidelines for software engineering studies
[27]. This is an external and independent replication study
without any of the authors of the original paper taking part in
the replication process.

In general, our replication results show that TraceScore is
replicable and generalizable under specific settings. However,
ABLoTS is neither replicable on the original data set nor
on a larger data set [31]. Specifically, we observed that the
implementation of ABLoTS reused a subcomponent from prior
work (AmaLgam [14]) that incorrectly sets a cut-off date,
which leads to training data leaking into test data.

The contributions of this paper are:
1) an empirical investigation showing that the TraceScore

component is replicable and generalizable, thus strength-
ening confidence that relations between bug reports
and feature requests yield useful information for bug
localization.

2) a failed attempt to replicate the promising results of the
ABLoTS approach, thereby showing that bug localiza-
tion still needs significant research efforts and is not
ready for practical application.

3) identification of the major reason why replication failed,
thereby highlighting the challenge of reusing research
results.

4) a lab package1 to replicate our experiment and evaluate
the ABLoTS approach.

The remainder of this paper is organized as follows. Sec-
tion II summarizes the original study, approach, evaluation,
and achieved results. Section III elaborates our replication
study design, research questions, and data set. The experimen-
tal results are presented and discussed in Section IV. Section V
discusses threats to validity. Related work is presented in
Section VI before Section VII concludes this work.

II. ORIGINAL STUDY

In this section, we provide an overview of the bug lo-
calization technique by Rath et al. [23]. We firstly present
the TraceScore component that is at the center of Rath et
al. ABLoTS approach, encapsulated in the Similar Reports
Component (see Fig 1) (Section II-A). Then, we present the
whole framework of the ABLoTS approach (Section II-B), the
utilized evaluation metrics (Section II-C) as well as the data
set as used in the original study (Section II-D). Finally, we
summarize the reported experimental results (Section II-E).
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Fig. 1. Components of ABLoTS.
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Fig. 2. TraceScore Component.

A. TraceScore Component

TraceScore is one of the main components of the ABLoTS
approach. Specifically, it introduces a novel calculation scheme
for the Similar Reports Component. The core idea is that
similar bugs will be caused by similar source code snippets.
Hence, by identifying similar bugs and inspecting which files
were changed in their bug-fixing commits, one can obtain a
list of files indicating the bug location.

TraceScore mainly consists of six steps, as shown in Fig 2.
It takes a new bug report b*, previously resolved bug reports B
and non-bug reports R (e.g., feature request and enhancements)

1https://github.com/feifeiniu-se/Replication



as input. Step 1 is artifact selection, based on two criteria, i.e.,
time domain and number of modified files. For the time domain,
bug reports b ∈ B and feature requests r ∈ R that are fixed
within “one year before b* was filed” to “the date when b* was
filed”, would be retained. As for number of modified files, only
bug reports b ∈ B that modify no more than 10 Java files and
feature requests r ∈ R that modify no more than 20 Java files
will be retained. The reasons for adoption of these two criteria
and their validity are explained in Section 6 of the original
study. Step 2 utilizes commonly used preprocessing techniques
to build a document-term-matrix [32] of the filtered artifacts
from Step 1. Then, TraceScore calculates the cosine similarity
between b* and each artifact in Step 3. In Step 4, a trace graph
is created, with b* as the root node, linked to sub-graphs of
different artifacts, by the edges indicating textual similarity
between b* and each artifact (if there is a trace link between
b* and artifact, the edge is set to 1). Each artifact traces
further to the files that are part of a corresponding commit
in the version control system. In this way, b* is indirectly
linked to a potentially large set of source code files, that need
subsequent ranking, where the ranking happens on the basis
of a TraceScore between each file and b* which is calculated
by (1) in Step 5. Finally, Step 6 sorts all the source code files
linked to b* according to TraceScore and outputs the ranked
list. A higher score indicates a higher likelihood of that file
being relevant.

SuspR(s, b∗) =
∑

ai∈{a|s∈fix(a)}

sim(ai, b∗)2

|fix(ai)|
(1)

B. ABLoTS Approach

The overall ABLoTS approach consists of four components:
1) similar reports component, 2) version history component,
3) code structure component, and 4) composer component,
as shown in Fig 1. TraceScore is an implementation of a
similar reports component. We only briefly describe the other
three components, as these are reused by Rath et al. without
changes.

Version History Component makes use of BugCache [5],
[33], to predict which files are likely to be buggy in the
future. BugCache takes commit history as input and outputs
a list of files with a high “suspiciousness” score. To this
end, it firstly identifies bug-fixing commits (commits whose
commit messages contain the word “fix” or “bug”) that were
committed within k days prior to the submission of the new
bug report b*. Then the suspiciousness score of each file f is
calculated by (2), where f is one of the buggy files in commit
c ∈ C, tc is the elapsed time in days between the commit
c and when the bug report was filed. k was set to 15 (days)
according to Wang et al. [14].

SuspH(f, b∗) =
∑

c∈C∧f∈c

1

1 + e12(1−((k−tc)/k))
(2)

Code Structure Component leverages BLUiR [19] to iden-
tify files from source code space according to the similarity

between source code files and bug report b*. It outputs a
ranked list of files with a suspiciousness score SuspS(f, b∗).

Composer Component aggregates the three suspiciousness
scores obtained by the first three components, i.e., SuspR,
SuspH , SuspS , and outputs the final results. Instead of
adopting a fixed weight scheme for the three scores as done by
Wang et al. [14], [17], ABLoTS applied Weka’s [34] J48 DT
to learn the best combination. For training, the classification
algorithm takes SuspR(f, b∗), SuspH(f, b∗), SuspS(f, b∗) as
the features, and whether that file f was changed as part of
the bug fix or not as the classification result. For each project
separately, they trained the classifier on 80% of the bug reports
that were resolved and evaluated ABLoTS on the remaining
20% that were resolved after the 80% cut-off deadline.

C. Evaluation Metrics

To evaluate the effectiveness of the approach, Rath et al.
adopted the following commonly used metrics:

Top@k [35] measures the percentage of bug reports in
which at least one of the buggy files is in top k ranked files,
where k=1,5,10.

Mean Average Precision (MAP) [32] is calculated as the
mean of the Average Precision over all queries. Average Pre-
cision of a given bug report aggregates precision of positively
recommended files as:

AP =

N∑
i=1

P (i) ∗ pos(i)
# of positive instances

(3)

where i is a rank of the ranked files, N is the number of
ranked files and pos(i) ∈ {0,1} indicates whether the ith file
is a buggy file or not. P (i) is the precision at a given top i
files.

Mean Reciprocal Rank (MRR) [36] computes the average
of the reciprocal of the positions of the first correctly located
buggy file in the ranked files.

D. Original Data Set

In the original study, Rath et al. contributed a data set [37]
consisting of 15 popular open-source projects with 13,581
bug reports and 9,219 feature requests. Firstly, they collected
issues (i.e., bug reports and feature requests), as well as the
dependency trace links from Jira [38], and downloaded source
code of these projects from GitHub [39]. Then the heuristic
proposed in [40] was applied to create links between issues
and commits. The ABLoTS approach was evaluated based on
this data set.

E. Achieved Performance Originally Reported

The achieved performance by Rath et al. is shown in
Table I, which is the average of 15 projects. According to
Rath et al., TraceScore benefits from leveraging non-bug issues
as well as traceability information. It can outperform two
state-of-the-art similar reports based approaches: SimiScore
[16] and CollabScore [41]. The overall ABLoTS framework
outperforms the AmaLgam framework [14] which was used
as a baseline.



TABLE I
ORIGINAL, REPORTED PERFORMANCES [23]

Algorithm MAP MRR Top 1 Top 5 Top 10
TraceScore 0.202 0.260 0.174 0.350 0.436
ABLoTS 0.488 0.545 0.487 0.610 0.649

III. REPLICATION METHODOLOGY

Our goal of the replication study is to investigate whether
the results based on the TraceScore component and ABLoTS
approach are replicable and generalizable. To this end, we 1)
replicate the component and the approach on a subset of the
original data set and 2) apply the component and the approach
on an extended data set consisting of 16 more projects.

This study is considered to be an external [27] replication
study of the original study, since none of the authors took part
in the replication process. However, we reused 11 projects of
the original data set to verify the results 2.

A. Research Questions

In the scope of this paper, we aim at answering the following
two research questions:

• RQ1. How effective is TraceScore in identifying bug-
relevant source code files?

– RQ1.1 Are we able to replicate the original perfor-
mance of the TraceScore component?

– RQ1.2 Does the TraceScore component yield similar
performance when applied to other data?

• RQ2. How effective is ABLoTS for bug localization?
– RQ2.1 Are we able to replicate the results of the

ABLoTS approach?
– RQ2.2 Does the ABLoTS approach yield similar

performance when applied to other data?
Our research questions are adapted from those addressed

in the original study, which involve the main contribution of
the Rath et al. study [23]. Specifically, RQ1 is adapted from
RQ1 of the original study, which evaluates the TraceScore
component. RQ2 is adapted from RQ4 of the original study,
which evaluates the ABLoTS approach. For each research
question, we replicate from two dimensions, i.e., replicability
and generalizability. The core difference of the dimensions is
the data set being used for evaluation. For the replicability
validation, we evaluate on the same projects with the original
study, to see if our replication results are consistent with
the original results. As for the generalizability validation,
we adopted an extended data set to see if the approach is
applicable to other projects as well. The other two RQs of the
original study mainly investigate the effectiveness of artifacts
selection, which is irrelevant of our goal, so we do not include
them in this study.

2The other four projects from the original data set were excluded due to
some missing commits on GitHub.

B. RQ1. How effective is TraceScore in identifying bug-
relevant source code files?

This research question mainly focuses on the main contri-
bution of Rath et al., i.e., TraceScore for the similar reports
component.

As the original source code is not available, we followed
the procedures proposed in the original paper (as illustrated
in Section II-A) as close as possible to duplicate all facets of
TraceScore. Specifically, on each project basis, we sort all the
issues according to the resolved date. Then we split all the
bug reports 80:20, with the latter 20% used as the test set to
recommend buggy files.

As in the original study, we filter the number of related bug
reports and features as well as commits based on age and size
from which to obtain a recommendation. For each bug report
b∗ in the test set, we consider only bug reports (and features)
b that occurred before b∗ as determined by the following con-
dition: “b.fixed date > b∗ .created date−365 days”. How-
ever, we are of the opinion that there is another constraint that
also should be satisfied: “b.fixed date < b∗ .created date”,
which means that only bug reports fixed before b∗ were filed
should be retained. These two settings describe the following
two recommendation situations: the former describes the bug
localization mechanism called shortly before fixing the bug,
close to the bug report’s closing date, while the latter describes
a recommendation immediately made upon bug creation. For
our replication, we were unable to determine whether the
authors only adopted the first constraint (denoted as relaxed
cut-off date) or adopted both constraints (denoted as strict cut-
off date). We conducted the replication with both relaxed and
strict cut-off date to understand the impact the additional con-
straint has on the results. Then, we select bug reports/features
according to the number of modified files identified in their
commits. We exclude issues that modify more than 10 files
for bug reports and more than 20 files for non-bug reports).
We then build up the trace graph from these issue subset as
shown in Fig 2 in Step 4. The edges between the root node
b∗ and other artifacts are calculated using cosine similarity
[42]. When an issue explicitly links to another issue, then the
link weight overrides the cosine similarity and becomes 1.
With the trace graph, the TraceScore between each file node s
and b∗, TraceScore(s, b∗) is calculated. Finally, all the files
according to their tracescore, we will get the ranked list for
b∗.

Then we evaluate our replication on the extended data set.
For the extended data set, we applied preprocessing as Step
2 (in Section II-A) to be consistent with the original data
set and to fit the replication. Specifically, for each issue, we
preprocessed the text including both summary and descrip-
tion according to Step 2 in Section II-A. We utilize NLTK
library [43] in Python for preprocessing, including stop words
removing, camel case splitting, lower casing and stemming.
Then the preprocessed texts are converted into TF-IDF [44]
vector with the sklearn library [45]. For the source code, we
exclude non-source code files based on the file name extension



and only retain Java files (“*.java”). For each file changed in
each commit, the extended data set contains the old name and
the new name for this file. According to the original study, we
only utilize the new name for each file, which means, removed
files will be excluded for each commit.

C. RQ2. How effective is ABLoTS for bug localization?

The ABLoTS approach is essentially an ensemble of three
components, i.e., similar reports, version history, and code
structure, as shown in Fig 1. Each strategy outputs a suspi-
ciousness score for a given bug report b* and source code file
s, denoted by SuspR(s, b∗), SuspH(s, b∗), and SuspS(s, b∗).
Then a composer component aggregates all three scores to
determine the final classification result. As described in the
original study, the ABLoTS approach is an evolved version of
AmaLgam [14] with two main differences: first, it replaces the
similar reports component with TraceScore; second, it applies
a dynamic suspiciousness score combination (instead of the
former static one). At the time of conducting the replication,
there is no open source code available for the whole frame-
work. We, therefore, replicated the overall framework along
the following lines.

Version History. As mentioned in Section II-B, the version
history component is implemented by BugCache, which is
proposed by Kim et al. [5]. BugCache maintains the mod-
ification history of files to predict buggy-prone files in the
future. It proved that more recently and frequently modified
files are more likely to be buggy in the future. Rahman
et al. proposed a simpler version of BugCache [33], which
only maintains a short history of file modification. Google’s
developers adapted Rahman et al.’s algorithm on their large
systems [46], [47]. AmaLgam adapted Google’s well-tested
algorithm with a version history component. We reused AmaL-
gam’s implementation of BugCache3, but made the following
modifications:

1) The BugCache version used in AmaLgam was written
in Java, while we manually translated it to Python, to be
compatible with our implementation.

2) In their paper, Wang et al. [14] elaborate that the approach
identifies commits that are committed 15 days before the new
bug report is created. However, after checking the source
code, we found that the implementation utilized the bug
report’s resolved date as the cut-off date to obtain previously
committed commits within 15 days. We contacted the authors,
and they agreed that the bug report’s creation dates should
have been adopted. Therefore, in our implementation, we used
the creation date for all our experiments.

3) To identify bug-fixing commits, Wang et al. proposed
that commit logs should match regular expression regex:
(.*fix.*)|(.*bug.*). Considering that some programming lan-
guages (e.g., Java and Python) are case-sensitive, we firstly
convert commit logs into lowercase, which is missing in
the original implementation. What is more, according to our
observation of the data set, some bug-fixing commit logs

3https://sites.google.com/view/mambalab/projects/amalgam

maybe not contain keywords like “fix” or “bug”. However,
they might start with the bug report’s ID. To this end, we
also include commits that start with any bug ID in their logs,
to identify bug-fixing commits more accurately. AmaLgam’s
authors also agree with us on this. This adapted selection of
commits only affects the commits used for BugCache, but not
any other component in ABLoTS.

Code Structure. Code Structure metrics are obtained with
BLUiR [19], which calculates the similarity between a new
bug report and the code structure of a source code file. It
takes summary and description of a bug report as two separate
parts and extracts class names, method names, variable names,
and comments of a source code file with Abstract Syntax
Tree. Then it indexes and searches buggy files based on the
Indri toolkit [48]. In this paper, instead of replicating our
own BLUiR tool, we used the implementation4 without any
modification from an empirical study by Lee et al. [24] to
obtain the SuspS(s, b∗) score.

Composer. ABLoTS applied J48 DT with default pruning
settings to classify source code files for bug reports. Specifi-
cally, for each b∗, there are multiple candidate source code files
s for recommendation. For each (s,b*), there will be a label C
∈ {true, false} indicating whether the file s is modified to
fix b or not. For training, the classifier takes the SuspR(s, b∗),
SuspH(s, b∗), and SuspS(s, b∗) scores for each (s, b*) as
feature and C as label. For test data, instead of output a label
indicating true or false, the probability of s being true (i.e., s
is modified by b∗) is utilized. Then for each b∗, all the files
are ranked according to the probability score.

On each project basis, Rath et al. sorted all the bug reports
by resolved date and took the first 80% bug reports as training
data, and the rest 20% as test data. To mitigate the influence of
imbalanced training data, ABLoTS used Weka’s sub-sampling
to under-sampling the training data.

Since our replication is based on Python, we chose the
popular open sourced Python library sklearn [45] for the DT
classifier and RandomUnderSampler in the Imblearn library
[49] for under-sampling. Essentially they are the same algo-
rithm with the original study, but just implemented by different
libraries. We assume that this will not cause significant differ-
ence to the result as we used exactly the same training data
as in the original paper (i.e., rather than sampling our own set
of training data we utilized the precalculated suspiciousness
scores and classification result from the replication package
to obtain a trained DT).

We applied the same procedure on the original data set and
the extended data set.

D. Data set

For the replicability validation, we reuse the data set pro-
vided for replication by Rath et al. [37]. However, by the time
we carried out the replication study, many commits from four
projects (namely, Axis2, Hadoop, Infinispan, and Pig) were no
longer available programmatically on GitHub and neither are

4https://github.com/exatoa/bench4bl



part of the original replication package. Hence, as we could not
obtain complete commit history for BugCache, we excluded
these four projects from the analysis in this paper.

In order to investigate the generalizability of TraceScore
component and ABLoTS approach, we picked an extended
data set, SEOSS 33 data set [31], which includes an additional
18 projects and 36,482 bug reports out of which we could
not use 2 projects due to the same issue of non-accessible
commits. This extended data set also includes the 15 original
projects from the replication package [37]. Details about the
extended data set are shown in Table II. We choose this data set
because it not only links bug reports to commit code change,
but also includes traceability information between bug reports
and non-bug issues, which caters to our needs perfectly.

Apart from the information in the data set, we additionally
collected version information for each project. In each commit,
developers may modify a file, add a new file, or remove an
old file. Removed files are obsolete and should not appear in
the recommendation of a new bug report. However, the similar
reports component leverages historical issues, which may be
pointing to no longer existing files. In this way, they may bias
the prediction results. To address this issue, we determine for
each commit which files exist just prior to this commit. Files
in this set can only be used as the candidates to recommend
the bug’s location.

TABLE II
CHARACTERISTICS OF THE EXTENDED DATA SET.

PROJECTS Time Period
(Month)

# Bug
Reports

# Non-bug
Reports # Commits

ARCHIVA 162 371 411 8006
CASSANDRA 106 3571 2813 23592
ERRAI 99 267 194 7645
FLINK 43 1350 2351 12419
GROOVY 173 1933 1017 12378
HBASE 131 4581 5171 14331
HIBERNATE 172 1947 1706 8173
HIVE 113 4776 4326 11179
JBOSS-T.-M. 145 331 489 2204
KAFKA 78 639 1149 4426
LUCENE 197 3773 5324 28995
MAVEN 183 760 574 10315
RESTEASY 119 345 228 3684
SPARK 93 328 7022 20829
SWITCHYARD 86 451 759 2928
ZOOKEEPER 116 470 471 1600

IV. RESULTS AND DISCUSSION

A. RQ1. How effective is TraceScore in identifying bug-
relevant source code files?

RQ1.1 Replicability. We carried out the replication accord-
ing to Section III-B. Results on the original data set are as
shown in Table III. The performance impact of using the strict
cut-off date is on average around 17% lower than using the
relaxed cut-off date.

To find out which implementation most likely has been
adopted by the original implementation, we performed a
pairwise t-test on the 11 projects, comparing both replica-
tion results against the reported results in [23] to establish

statistically whether these results can be considered to be the
same. According to the pairwise t-test, the relaxed cut-off date
is closer to the original implementation. The pairwise t-test
results (as shown in Table IV) show that for MRR, Top1, Top5,
and Top10, there is no significant difference while for MAP
we have to reject the null hypothesis for the relaxed cut-off
date: the average MAP reported by Rath et al. is 32% higher
than our replication result. For the remaining four evaluation
metrics, there is no significant difference; the mean values are
statistically the same. So we conclude that with the relaxed
cut-off date TraceScore can be considered replicable while
with the strict cut-off date it cannot be considered replicable
as we cannot achieve statistically comparable or better results.

To give benefit to doubt, we adopted the relaxed cut-off
date for the remainder of the replication and generalization
investigations. However, in practice, the choice between re-
laxed cut-off date and strict cut-off date is artificial as only
commits available at the time the bug localization mechanism
is applied are considered for producing the recommendation.

RQ1.2 Generalizability The evaluation results based on the
extended data set are shown in Table V. The average MAP,
MRR, Top 1, Top 5 and Top 10 are 18.3%, 28.4%, 19.6%,
38.4%, 47.3%, respectively. The MAP value is distributed
between 4.4% and 32.5%. In order to confirm if there is a
difference between the distribution of the original results and
extended results, we leverage the two-sample Kolmogorov-
Smirnov test (K-S test) [50], which is used to test whether
two samples come from the same underlying one-dimensional
probability distribution. For each evaluation metric, we per-
form a two-sample K-S test, with one sample being the results
from the original data set and the other sample being the
results from the extended data set. Results are shown in the
“TraceScore” column of Table VI. Since all the p-values are
larger than 5%, we can assert that the two samples come from
the same distribution. The left plot in Fig 3 shows the data
value on all five metrics, from which we can see that on the
extended data set, TraceScore yields slightly higher median
and wider variations. The average over the extended data set
is about 12% ∼ 27% higher than on the original data set (e.g.,
MAP is 26% higher). But there is no major difference overall.

Moreover, we also investigate the improvement of
TraceScore over the same baseline as in the original paper.
With SimiScore [16] as baseline, we obtain the improvement
of TraceScore over SimiScore on both original and extended
data set. The “Improvement” column of Table VI shows the
results of the K-S test. Given the p values, the improvement
of MRR, Top 1, and Top 10 on the original data set and
the extended data set are very likely to come from different
distributions. To this end, from the middle box plot in Fig 3
for improvement, we can observe a much higher median,
maximum, and minimum, which indicates TraceScore yields
higher performance improvement on the extended data set.

We can therefore conclude that the performance of
TraceScore also holds for a larger data set, and we gain confi-
dence that TraceScore’s performance is generally achievable.



TABLE III
TRACESCORE PERFORMANCE ON THE ORIGINAL DATA SET.

Relaxed Cut-off Date Strict Cut-off Date
PROJECTS MAP MRR Top 1 Top 5 Top 10 PROJECTS MAP MRR Top 1 Top 5 Top 10
DERBY 0.124 0.240 0.149 0.340 0.404 DERBY 0.084 0.158 0.096 0.219 0.272
DROOLS 0.183 0.383 0.276 0.502 0.615 DROOLS 0.171 0.37 0.265 0.467 0.603
HORNETQ 0.134 0.241 0.130 0.352 0.481 HORNETQ 0.105 0.207 0.093 0.315 0.444
IZPACK 0.170 0.229 0.156 0.328 0.422 IZPACK 0.101 0.152 0.094 0.219 0.297
KEYCLOAK 0.125 0.234 0.152 0.323 0.418 KEYCLOAK 0.081 0.16 0.082 0.241 0.323
LOG4J2 0.182 0.271 0.191 0.360 0.416 LOG4J2 0.165 0.256 0.18 0.315 0.382
RAILO 0.138 0.202 0.117 0.267 0.350 RAILO 0.131 0.194 0.117 0.25 0.35
SEAM2 0.134 0.195 0.141 0.244 0.288 SEAM2 0.099 0.159 0.103 0.212 0.263
TEIID 0.194 0.278 0.188 0.385 0.465 TEIID 0.140 0.222 0.135 0.331 0.412
WELD 0.102 0.208 0.098 0.312 0.420 WELD 0.103 0.201 0.098 0.304 0.411
WILDFLY 0.108 0.185 0.116 0.268 0.326 WILDFLY 0.085 0.146 0.087 0.217 0.268
Average 0.145 0.242 0.156 0.335 0.419 Average 0.115 0.202 0.123 0.281 0.366

MAP MRR Top 1 Top 5 Top 10

TraceScore
MAP MRR Top 1 Top 5 Top 10

TraceScore
MAP MRR Top 1 Top 5 Top 10

Improvement of TraceScore over SimiScore
MAP MRR Top 1 Top 5 Top 10

Improvement of TraceScore over SimiScore
MAP MRR Top 1 Top 5 Top 10

Fixed weight
MAP MRR Top 1 Top 5 Top 10

Fixed weight

Fig. 3. Box plots of TraceScore, improvement of Tracescore and fixed weight, on both original and extended data set.

TABLE IV
PAIRWISE T-TEST BETWEEN RELAX CONSTRAINT RESULT AND ORIGINAL

RESULT.

Metrics Pairs Deviation P valueOriginal Replication
MAP 0.191 0.145 0.05 0.000**
MRR 0.248 0.242 0.01 0.522
Top 1 0.163 0.156 0.01 0.407
Top 5 0.336 0.335 0.00 0.924

Top 10 0.419 0.419 0.00 0.99
*p <0.05 **p <0.01

Answering RQ1: Under the relax cut-off date constraint,
TraceScore is replicable and also can be generalized to an
extended data set. However, under the strict cut-off date
constraint, we cannot claim replicability as the performance
is significantly lower than reported.

B. RQ2. How effective is ABLoTS for bug localization?

RQ2.1 Replicability ABLoTS’s performance results on the
original data set are shown in Table VII. Compared to the
results reported in the original paper (cf. Table I) we note that
our replication produces far worse results. MAP and MRR are
below 10% for most projects. ABLoTS, which combines three
scores: SuspR, SuspH , and SuspS , does not even achieve the
same results as the single SuspR score. This counterintuitive

TABLE V
TRACESCORE PERFORMANCE ON THE EXTENDED DATA SET.

PROJECTS MAP MRR TOP 1 Top 5 Top 10
ARCHIVA 0.134 0.22 0.147 0.28 0.413
CASSANDRA 0.218 0.333 0.222 0.453 0.551
ERRAI 0.059 0.15 0.093 0.204 0.296
FLINK 0.18 0.305 0.207 0.415 0.522
GROOVY 0.325 0.393 0.271 0.522 0.625
HBASE 0.236 0.352 0.25 0.455 0.561
HIBERNATE 0.118 0.231 0.172 0.3 0.359
HIVE 0.264 0.38 0.267 0.506 0.599
JBOSS-T.-M. 0.136 0.247 0.164 0.373 0.433
KAFKA 0.296 0.473 0.367 0.578 0.688
LUCENE 0.201 0.32 0.228 0.419 0.494
MAVEN 0.162 0.222 0.132 0.316 0.382
RESTEASY 0.101 0.202 0.101 0.348 0.435
SPARK 0.31 0.383 0.273 0.545 0.576
SWITCHYARD 0.044 0.114 0.088 0.121 0.198
ZOOKEEPER 0.149 0.226 0.149 0.309 0.436
Average 0.183 0.284 0.196 0.384 0.473

TABLE VI
K-S TEST RESULT.

TraceScore Improvement Fixed Weight
Metrics K-S test P value K-S test P value K-S test P value
MAP 0.438 0.124 0.500 0.054 0.313 0.452
MRR 0.409 0.175 0.693 0.002 0.295 0.512
Top 1 0.409 0.175 0.625 0.007 0.210 0.856
Top 5 0.409 0.175 0.443 0.115 0.443 0.115
Top 10 0.415 0.159 0.540 0.028 0.358 0.289



result motivated us to investigate in more detail how this
outcome can be explained.

For the strict replication, we trained the DT on the in-
termediate three scores (i.e., SuspR, SuspH , SuspS) made
available by Rath et al. in their replication package, For
comparison, we also trained a separate DT from our own
sample of files, their suspiciousness scores, and bug reports.
Note that the original replication package just provided tu-
ples of suspiciousness scores and classification results, but
not which bug report and which files were used to obtain
those suspiciousness scores. We, however, applied the same
sampling criteria.

We inspected the original DT (i.e., the one obtained from
the replication data) to obtain the average5 feature importance
(non-normalized) of each component: 0.037 for BLUiR, 0.377
for BugCache, and 0.018 for TraceScore. This indicates that
BugCache almost exclusively determines the final classifica-
tion result. In contrast, in the AmaLgam approach, which was
used as a baseline for ABLoTS, the authors empirically set
fixed weights for the three suspiciousness scores, which are
0.56 for BLUiR, 0.3 for BugCache and 0.14 for TraceScore.
Our DT trained from scratch exhibited the following (non-
normalized) feature importance: 0.243 for BLUiR, 0.007 for
BugCache, 0.037 for TraceScore, which still does not yield as
good results (see Table VII) as the fixed weights determined
in AmaLgam.

This discrepancy in feature importance values helped us
identify the root cause for the difference in performance
results. Rath et al. adopted the implementation of BugCache by
Wang et al. [14], where the bug report’s fixed date was utilized
for the cut-off date, as shown in Fig 4. If one or more bug-
fixing commits occurred within 15 days prior to the fixed date,
BugCache would recommend the files within these commits
(i.e., potentially exactly those files that were changed to fix
the bug). However, in a realistic bug localization situation,
any file recommendation would only be useful before any of
those commits. Thus, for correct evaluation, these commits
must not be used.

Figure 4 illustrates such a situation. There is a bug report
“HORNETQ-1301” created on 2014-01-09, and fixed on 2014-
01-14. Two commits c6 and c7 were committed to fix this
bug between the created date and fixed date, on 2014-01-09.
When BugCache adopts the fixed date as the cut-off date and
identifies bug-fixing commits within 15 days, then c4, c5, c6,
and c7 would be taken into consideration and result in a high
SuspH score, according to Eq. 2. Doing so, the DT would
learn that the scores by BugCache are very indicative of the
actual classification result and hence assign it a high feature
importance. However, in practice, c6 and c7 are unknown for
predicting bug report “HORNETQ-1301”, they are foreknowl-
edge about the bug. The right way of implementing BugCache
is using the creation date, or any date before the bug’s first
partial fix implementation. After contacting the authors of
both ABLoTS and AmaLgam, AmaLgam’s authors stated that

5Recall that the DT is trained separately for each project.

they agreed with our finding and that they adopted the wrong
date, while authors of ABLoTS stated that they directly reused
AmaLgam’s implementation.

The incorrectly derived SuspH scores thus greatly boost the
result of the DT. When we utilized BugCache in the correct
manner (i.e., use the created date as the cut-off date), DT
did not yield results even close to the original performance
(even when applying hyperparameter tuning). For comparison,
we adopted AmaLgam’s composer with a fixed weight for
each component: 0.56 for BLUiR, 0.3 for BugCache, and 0.14
for TraceScore. The results of the fixed weight composer are
shown in Table VIII, the average MAP, MRR, Top 1. Top
5, and Top 10 are 29.8%, 43.3%, 32%, 56.3% and 64%,
respectively. Compared to TraceScore, the results have been
improved by 105.8%, 78.7%, 105.2%, 68.4%, and 52.9%,
respectively.

Aside from the DT feature importance values, a second
discrepancy emerged when we investigated the evaluation data
set. In the replication package, the intermediary suspiciousness
scores were provided not only as a training set for the DT but
also as an evaluation set (i.e., the remaining 20%). When we
trained and evaluated with these two data sets, we could repli-
cate the results. However, as outlined above, when obtaining
the suspiciousness scores ourselves, we could not. The discrep-
ancy we found was that the evaluation data set contained much
fewer evaluation data points (i.e., suspiciousness scores with
their classification ground truth) than these projects contained
source code files. In other words, for a particular bug, not all
source code files were utilized for evaluation but just a subset.6

Across all projects, the number of candidates ranges from 60
to 70, regardless of actual number of files in the respective
project. For the project HORNETQ, for example, even when
we select only files for which a TraceScore suspiciousness
score and a BLUiR suspiciousness score exist, we obtain
around 4500 file candidates. In addition, for some of these
files the evaluation data set does not provide any of the
three suspiciousness scores at all, just the classification result.
Hence, we could not establish how these file candidates have
been filtered and why only a subset has been chosen. The
paper does not describe this aspect, but rather refers to the
evaluation design of Amalgam.

All in all, we found that ABLoTS adopted the wrong cut-off
date for BugCache due to having reused the component and
configuration from AmaLgam without further investigation,
resulting in the incorrect SuspH scores. Hence, we conclude
that ABLoTS performance cannot be replicated.

RQ2.2 Generalizability Since ABLoTS is not replicable,
exploring its performance on the extended data set for gen-
eralizability evaluation would yield little insight. However, in
order to explore how TraceScore would perform when jointly
used with the other two components, like in AmaLgam [14],
[17], we applied a fixed weight to aggregate the three scores.
That is, the suspiciousness score for the source code file s is

6The identity of the files is not provided in the replication package.



Fig. 4. BugCache using created date vs using fixed date.

TABLE VII
ABLOTS PERFORMANCE ON ORIGINAL DATA SET.

PROJECTS MAP MRR TOP 1 Top 5 Top 10
DERBY 0.076 0.111 0.02 0.171 0.326
DROOLS 0.049 0.06 0.023 0.054 0.097
HORNETQ 0.057 0.067 0 0.056 0.185
IZPACK 0.086 0.11 0.016 0.172 0.375
KEYCLOAK 0.029 0.05 0.006 0.044 0.101
LOG4J2 0.065 0.072 0.011 0.067 0.146
RAILO 0.06 0.077 0 0.1 0.283
SEAM2 0.08 0.105 0.019 0.179 0.333
TEIID 0.056 0.079 0.015 0.104 0.231
WELD 0.02 0.024 0 0.018 0.027
WILDFLY 0.03 0.04 0.007 0.036 0.087
Average 0.055 0.072 0.011 0.091 0.199

calculated according to Eq. 4, where the value of a and b are
set to 0.2 and 0.3 as per prior work.

The results of fixed weight are shown in Table IX. On
the additional 16 projects, the fixed weight composer can
achieve an average MAP, MRR, Top 1, Top 5, Top 10 as
34.4%, 47.7%, 35.6%, 62.1% and 71.4%, which improves over
the single TraceScore by 87.8%, 67.8%, 81.8%, 61.6% and
50.8%, respectively. Compared to the results on the original
data set, the average evaluation results over the extended
data set are 10% ∼ 16% higher (e.g., the average MAP is
34.4 vs 20.2). K-S test (“Fixed Weight” column in Table VI)
shows that all the p-values are larger than 5%, so we should
reject the hypothesis that the two samples come from different
distributions. According to the box plot (right in Fig 3), we
can see the distribution on each metric is more concentrated,

TABLE VIII
FIXED WEIGHT COMPOSER ON ORIGINAL DATA SET.

PROJECTS MAP MRR TOP 1 Top 5 Top 10
DERBY 0.312 0.478 0.36 0.615 0.725
DROOLS 0.272 0.464 0.339 0.607 0.712
HORNETQ 0.37 0.555 0.426 0.704 0.778
IZPACK 0.37 0.493 0.391 0.594 0.672
KEYCLOAK 0.234 0.377 0.247 0.525 0.595
LOG4J2 0.391 0.541 0.416 0.719 0.753
RAILO 0.286 0.398 0.267 0.567 0.65
SEAM2 0.339 0.402 0.308 0.532 0.583
TEIID 0.12 0.169 0.1 0.208 0.296
WELD 0.252 0.445 0.33 0.562 0.634
WILDFLY 0.334 0.441 0.333 0.565 0.645
Average 0.298 0.433 0.320 0.563 0.640

more similar, and the mean values are closer. Hence, we can
conclude that the performance of the fixed weight composer
also holds for a larger data set, and we gain confidence in its
generalizability.

SuspR,S,H(s) = b ∗ SuspH(s)+

(1− b) ∗ (SuspR(s) ∗ a+ (1− a) ∗ SuspS(s))
(4)

TABLE IX
FIXED WEIGHT COMPOSER ON THE EXTENDED DATA SET.

PROJECTS MAP MRR TOP 1 Top 5 Top 10
ARCHIVA 0.322 0.477 0.347 0.587 0.667
CASSANDRA 0.335 0.462 0.330 0.622 0.741
ERRAI 0.310 0.505 0.389 0.630 0.722
FLINK 0.416 0.560 0.456 0.670 0.752
GROOVY 0.388 0.458 0.331 0.618 0.726
HBASE 0.398 0.528 0.398 0.697 0.778
HIBERNATE 0.234 0.400 0.290 0.551 0.626
HIVE 0.357 0.483 0.343 0.647 0.746
JBOSS-T.-M. 0.370 0.536 0.403 0.701 0.791
KAFKA 0.474 0.623 0.516 0.742 0.844
LUCENE 0.321 0.466 0.336 0.624 0.710
MAVEN 0.337 0.416 0.296 0.546 0.671
RESTEASY 0.257 0.391 0.275 0.536 0.638
SPARK 0.406 0.496 0.379 0.606 0.712
SWITCHYARD 0.160 0.300 0.220 0.407 0.462
ZOOKEEPER 0.422 0.537 0.383 0.745 0.830
AVERAGE 0.344 0.477 0.356 0.621 0.714

Answering RQ2: The reported results of ABLoTS are not
replicable, because of the incorrect use of the cut-off date in
the BugCache component and the sub-optimal configuration
of the composer. Consequently, we did not check the general-
izability of ABLoTS, since applying an incorrect technique
would provide little useful insight. However, with a fixed
weight scheme, the results are generalizable on the extended
data set.

C. Discussion

Overall, as shown in Table X, our experimental results
suggest that TraceScore is replicable under relaxed cut-
off date constraint, but, non-replicable under strict cut-off
date constraint, where the former can achieve better results.
However, in actual applications, the choice between relaxed
cut-off date and strict cut-off date is flexible, as commits
available at the time when developers perform bug-fixing tasks
will be considered for recommendation.

On the extended data set, TraceScore also yields simi-
lar results compared with on the original data set, which
demonstrates that TraceScore possesses good generalizabil-
ity. However, the results vary more (i.e., some projects ex-
hibit much higher performance, other projects exhibit even
lower performance), it is not possible to accurately predict
the performance of TraceScore on a new project. Additional
investigations are necessary to understand when TraceScore
is expected to perform well and under which conditions
TraceScore will not yield a lot of benefits.



ABLoTS, in contrast, is not reproducible for two main
reasons: 1) the authors reused the wrong BugCache imple-
mentation from Wang et al. [14] (we confirmed the incorrect
use with Wang et al.), which results in the BugCache score
greatly boosting the final result; 2) when we adopt the correct
BugCache score, we could not duplicate the DT composer
because of a lack of details in the original study. We are
skeptical whether DT is the right choice for the composer, as
also different sampling strategies and hyperparameter tuning
yielded a performance worse than the static composer configu-
ration. When we utilized this fixed weight composer proposed
by AmaLgam we observed its performance to hold also for
the extended data set.

We observed that combining all three scores can improve
the TraceScore result by 50% ∼ 105% on both data set, which
suggests that a combination of different components is likely
to outperform any single mechanism. To this end, the choice
of composer is a crucial aspect. In preliminary results, that
are outside the scope of this paper, we have found that other
machine learning and AI techniques can outperform the static
composer.

One additional take-away of our replication study is paying
attention to the challenge of properly evaluating a technique
in the presence of temporal aspects, especially when third-
party research outcomes (i.e., BugCache) behave differently
than expected. The case of the 15-day interval of BugCache
is especially tricky, as for other data sets where commits of a
bug predominately happen more than 15 days before the bug’s
closing date, no such negative side effect would have been
noticeable. In the case of ABLoTS sanity checks on the DT’s
feature importance values would have identified unexpected
results (i.e., with BugCache rather than TraceScore dominating
the classification result), subsequently triggering confirmation
or revision of the composer mechanism.

Overall, the results of this replication study suggest that the
state of the art in bug localization is not as useful as prior
results have suggested and that further research is still needed
to obtain results that are good enough to be useful in practice.

TABLE X
SUMMARY OF RESULTS.

Replicable Generalizable

TraceScore Relaxed cut-off date Yes Yes
Strict cut-off date No -

ABLoTS No -
Fixed Weight Composer - Yes

D. Implications to Future Replication
In this section, we summarize lessons learned through our

replication specific to bug localization. The goal is to support
researchers in more efficiently and rapidly replicating the
approach for a comparative study or as a baseline for novel
approaches.

• Data Collection: During the data collection, Rath et al.
collected both bug reports and non-bug reports, trace-
ability information between reports, commit logs, commit

code change, and constructed links from issues to code
change. For the ground truth construction, Rath et al.
utilized the modified files and newly added files as
the ground truth. However, in our opinion, which files
are newly added cannot be predicted by definition. In
contrast, removed files are predictable, and should be
included in the ground truth. This minor change would
not change the technique in the approach, but might
impact the evaluation scores.

• Trace Graph Construction: The construction of the trace
graph requires previously fixed issues. When replicating,
researchers should be careful about the date for artifacts
selection. That is, only commits created before the pre-
diction date may be considered.

• BugCache Calculation: For selecting the historical bug-
fixing commits, apart from keywords-based selection,
also a bug ID can identify bug-fixing commits. More im-
portant, as with the trace graph construction, any commit
information taken for file candidate scoring must have
been already available by the fictive recommendation
time (e.g., bug creation date) or at the latest the bug’s
first partial fix implementation. As we have seen in the
replication study, using the bugs fixed date may lead to
data leakage.

• Choice of Composer: With a limited set of features (i.e.,
the three suspiciousness scores), a DT may not be the
best choice.

V. THREATS TO VALIDITY

Construct Validity. One possible threat to construct validity
is that there is no available open source implementation of
ABLoTS approach, which means we have to re-implement it
by ourselves. To alleviate this, we carefully read the original
study, trying to reproduce it as close as possible. For the
BLUiR component, we reused existing open source code from
a published paper to reduce possible errors. As for BugCache
component, we translate the original implementation from Java
into Python with great care. We carefully examined the code
and the output to avoid errors.

Internal Validity. From a perspective of internal validity,
potential errors can happen in the reproduction (e.g., settings
and library usage), which is a common threat to replication
studies. We tried out possible settings and compare the results
with the original study. Another potential threat is that the open
source projects in our data set might have been changed by the
day we collected from GitHub. To address this threat, we filter
out projects that do not have complete commits information
anymore.

External Validity. Regarding external validity, we exper-
imented only on open source Java projects. We encourage
future studies to replicate this study with other programming
languages as well as commercial projects.

Conclusion Validity. Conclusion Validity could come from
the interpretation of the results, which includes the evaluation
metrics for evaluation and K-S test for comparison. To mitigate
the threat, we adopted the same evaluation metrics adopted



in the original paper. Then the two sample K-S test was
utilized to compare the difference of experiment results, as
it is sensitive to differences in both location and shape of the
empirical cumulative distribution functions of the two samples.

VI. RELATED WORK

Recently, many IRBF approaches have been proposed,
which leverage information retrieval techniques to find buggy-
prone snippets from all source code candidates. BugLoca-
tor calculates similarity between bug reports to recommend
similar files to similar bug reports [16]. Sisman and Kak
propose a source code version history-based fault localization
approach, which utilizes the frequency of a file being buggy
and its modifications to prioritize candidate source code files
[51]. Wang et al. combine similar bug reports, code version
history, and code structure to find the buggy files [14], [17].
Niu et al. proposed a refactoring-aware traceability model
for constructing more accurate code history, which can boost
the results of similar bug reports and code version history
component [52]. Wen et al. use change logs and change hunks
from commit message as alternative of segments of source
code files to enable more accurate bug localization [53]. For
comparison of state-of-the-art approaches, Lee et al. conducted
a generalized and large-scale investigation into six IRBL
techniques [24]. Li et al. re-implement six state-of-the-art bug
localization approaches and report their effectiveness on 10
Huawei projects [25]. Both studies analyzed the same five
state-of-the-art approaches and found lower average results
than the original ABLoTS results (e.g., MAP less than 0.4, and
MRR less than 0.53). However, neither of these two studies
included ABLoTS, which strengthens the usefulness of our
study.

VII. CONCLUSION

In this paper, we conduct a replication study of the ABLoTS
approach for bug localization. We recreated the original
approach, both on the original data set and an extended
data set. We found that the core component of ABLoTS,
i.e., TraceScore, is replicable and generalizable under a re-
laxed cut-off constraint, but irreplicable under a strict cut-
off constraint. ABLoTS is neither replicable nor generalizable
because of the adoption of an incorrect cut-off date in the Bug-
Cache subcomponent, leading to training data leaking into test
data. Also, the chosen technique to combine multiple scores
yielded poor results when applied to the correctly derived
scores. Our study emphasizes the importance of choosing the
proper cut-off dates in evaluating bug localization techniques.
As part of future work, we already started investigating al-
ternative information sources and techniques to improve bug
localization performance, specifically focusing on techniques
to better combine multiple scoring techniques.

ACKNOWLEDGMENT

This work is supported by Natural Science Foundation of
Jiangsu Province, China (BK20201250), cooperation Fund of
Huawei-NJU Creative Laboratory for the Next Programming,

and also supported in part by NSF Grant 2034508 (USA), by
a Sam Taylor Fellowship Award, the Austrian Science Fund
(FWF) grant P31989-N31 and P34805-N as well as the LIT
Secure and Correct System Lab sponsored by the province of
Upper Austria. Jidong Ge is the corresponding author.

REFERENCES

[1] L. Tan, C. Liu, Z. Li, X. Wang, Y. Zhou, and C. Zhai, “Bug characteris-
tics in open source software,” Empirical software engineering, vol. 19,
no. 6, pp. 1665–1705, 2014.
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